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Abstract Carey’s Equality pertaining to stationary models is well known. In this
paper, we have stated and proved a fundamental theorem related to the formation of
this Equality. This theorem will provide an in-depth understanding of the role of each
captive subject, and their corresponding follow-up duration in a stationary population.
We have demonstrated a numerical example of a captive cohort and the survival pattern
of medfly populations. These results can be adopted to understand age-structure and
aging process in stationary and non-stationary population models.
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1 Introduction

The motivation to explore the question from which Carey’s Equality ultimately
emerged stemmed from the lack of methods for estimating age structure in insect pop-
ulations in particular, and in a wide range of animal populations generally. Although
various methods exist for estimating the age of individual insects, including the use
of mechanical damage, chemical analysis and gene expression, many are costly, most
require major training and calibration efforts and none are accurate at older ages.
Because of these technical constraints, our concept was to explore the possibility of
using the distribution of remaining lifespans of captured insects (e.g. fruit flies) to
estimate age structure statics and dynamics. The underlying idea was that the death
distribution of all standing populations must necessarily be related to the population
from which it is derived, ceteris perabus.

James Carey first observed the symmetric survival patterns of a captive cohort
and follow-up cohort of medflies (see for example in Müller et al. 2004; Carey et al.
2008). Later it was referred to as Carey’s Equality (Vaupel 2009) although a formal
mathematical statement on a generalized Equality of Carey’s type was missing. The
phenomena of Equality of mean length of life lived by a cohort of individuals up to a
certain time, and the mean of their remaining length of life in a stationary population,
was well established (Kim and Aron 1989; Goldstein 2009). Proof of Carey’s Equality
in (Vaupel 2009) is based on the stationary population property explained in (Goldstein
2009) although similar phenomena were also found to be useful in understanding the
renewal process, see Chapter 5 in Cox (1962). We have formally stated a fundamental
theorem to justify Carey’s Equality under a stationary population model, which would
allow us to obtain expected lifetimes of a captive cohort of subjects in which each
subject is captured at a different age, starting at birth. Further, we have proved our
statement under a certain combinatorial and stationary population modeling set-up.
These results are extended to two dimensions for estimating age-structure of wild
populations and understanding internal structure of aging process, age-structure of
wild populations (Rao and Carey 2014). One also needs to understand the implications
of our results for estimating the age structure in stable populations (Rao 2014).

2 Main theorem

Theorem 1 Suppose (X, Y, Z) is a triplet of column vectors, where X = [x1, x2, . . . ,

xk]T , Y = [y1, y2, . . . , yk]T , Z = [z1, z2, . . . , zk]T representing capture ages,
follow-up durations, and lengths of lives for k-subjects, respectively. Suppose, F(Z),
the distribution function of Z is known and follows a stationary population. Let G1
be the graph connecting the co-ordinates of SY , the survival function whose domain
is N (k) = {1, 2, 3, . . . , k} i.e. the set of first k positive integers and SY ( j) = y j for
j = 1, 2, . . . , k. Let G2 be the graph connecting the co-ordinates of CX , the function
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of capture ages whose domain is N (k) and CX ( j) = x j for all j = 1, 2, . . . , k. Sup-
pose C∗

X (− j) = x j for all j = 1, 2, . . . , k. Let H be the family of graphs constructed
using the co-ordinates of C∗

X consisting of each of the k! permutations of graphs. Then
one of the members of H (say, Hg) is a vertical mirror image of G1.

Proof In the hypotheses, the information on capture ages, follow-up durations, and
lengths of lives are given as column vectors. For analyzing data collected from life
table studies on different organisms (including life expectancy), column vectors are
used for representing a convenient data structure, where the matrix of interest has only
one column. Capture ages of all subjects in our paper are arranged in a column such
that it will be suitable to do addition operations on these ages with a column vector
consisting of lives left for corresponding subjects. One also can compute inner product
of these two column vectors, but the resultant scalar obtained by such operation is not
of interest in the present context. Life table analysis in demography considers column-
wise information and each column has a special purpose even though the information
obtained from the last column has the key data needed for actuarial modeling, mortality
analysis, etc, Using these column vectors of capture ages and follow-up durations from
the hypothesis, we have constructed two sets, I1 and I2.

Let I1 = {(i, yi ) : 1 ≤ i ≤ k} and I2 = {(i, xi ) : 1 ≤ i ≤ k}. G1 is constructed
using specific ordered pairs of I1, explained later in the proof, and G2 is constructed
by corresponding ordered pairs of I2. There are two criteria, U1 and U2, that govern
the one-to-one correspondence properties of the two functions, S and CX .

U1 = {No two subjects are captured who are of the same age and

there are no two subjects whose follow-up times until death are identical}.
U2 = {There is more than one subject which has the same capture ages, and

there is more than one subject which has the same follow-up

durations until death}

Suppose f1 and f2 are probability density functions of capture times and follow-up
times to death, then by Vaupel (2009), we will have f1(a) = f2(a), which is the
probability of an individual who lived ‘a’ years is the same as probability that this
individual lives ‘a’ years during the follow-up (Vaupel 2009). For an infinite population
in a continuous time set-up for each x ∈ CX there exists a y ∈ SY such that

∫ ∞

0
x(s) ds +

∫ ∞

0
y(s) ds =

∫ ∞

0
z(s) ds (2.1)

and

xA = yA = 1

2

∫ ∞

0
z(s) ds, (2.2)

where xA and yA are the average capture ages and average follow-up durations until
death. Sum of the age at capture of i th-subject (i.e. xi ) and the follow-up duration (or
time left in the current context) of i th-subject (i.e. yi ) is equal to the total length of
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the life (i.e. zi ) for the i th-subject. See Vaupel (2009), Ryder (1975) and Chapter 3 in
Preston et al. (2001) for a description of stationary population models and see page
49 in Goswami and Rao (2006) and see page 52 in Lawler (2006) for the stationary
distributions.

Let’s define max{yi }k
i=1 = yt1 for some t th

1 -subject out of k-subjects,
max{yi : for all i ∈ N (k) and i �= t1} = yt2 for some t th

2 -subject out of k − 1
subjects and so on until we arrive at,

max{yi : for all i ∈ N (k) and i �= t1, t2, . . . , t(k−1)} = ytk .
G1 is constructed by joining the co-ordinates of the set S on the first quadrant, where

S = {(t1, yt1), (t2, yt2), . . . , (tk, ytk )}. (2.3)

We call each co-ordinate of S as a cell of S. One can visualize, cells in S are made
up of ordered pair of co-ordinates, where abscissa is the subject captured and ordinate
is the life left for this subject after capture. Here, the graph, we mean by a curve
obtained by joining the cells in S. Each cell, except the first and the last cell of S are
joined to both sides of its neighboring cells. In case there is more than one subject
with a maximum value at one or more stage above, it will lead to two or more identical
co-ordinates that are used in G1. When S satisfies U1, G1 is a graph of decreasing
function; when S is satisfies criterion U2, G1 is a graph of combination of decreasing
and non-decreasing functions.

We can construct a sequence of quantities xu1 , xu2 , . . . , xuk similarly to S to form
the set T , given below:

T = {(u1, xu1), (u2, xu2), . . . , (uk, xuk )} (2.4)

Corresponding to (t1, yt1) ∈ S there exists a ( j, x j ) ∈ I2 which could be (u1, xu1)

or some other cell in T . Note that, C∗
X = {(− j, x j ) : 1 ≤ j ≤ k}. Corresponding to

(t1, yt1) ∈ S if there exists a cell (| − i |, xi ) ∈ C∗
X such that |t1 − | − i || = 0 and

|yt1 − xi | = 0 then we call (t1, yt1) and (| − i |, xi ) are a pair of equidistant cells from
a vertical axis. We can construct a graph H1 using cells of C∗

X in the natural order
of integers. In total, we can have k! permutations of orders to construct H1,..., Hk!.
Suppose we denote the first combination of cells as {(− j (1), x (1)

j ) : 1 ≤ j ≤ k} and

the second combination of cells as {(− j (2), x (2)
j ) : 1 ≤ j ≤ k} and so on. Negative

index here indicates that the subject captured is considered on the negative x-axis,
which is similar to the left part of the Fig. 1, if we consider the values 25, 50, 75 and
100 for pre-capture segment as −25,−50,−75 and −100 as we visualize them on
the negative x-axis. Thus by previous arguments, a family of graphs H is constructed.
One of these combinations, for example, the gth combination, is used to construct a
graph which we denote with Hg, which satisfies following Equality:

|t1 − | − 1|(g)| = 0 and |yt1 − x (g)
1 | = 0

|t2 − | − 2|(g)| = 0 and |yt2 − x (g)
2 | = 0

...
...

|tk − | − 1|(g)| = 0 and |ytk − x (g)
k | = 0
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Generalization of Carey’s equality

Fig. 1 Schematics of a randomly sampled hypothetical stationary Mediterranean fruit fly population
(adapted from Carey et al. 2012). Horizontal lines depict the life course of individual flies from birth
(eclosion) to death. a Example of the life courses of captive individuals divided into pre- and post-capture
segments and ordered from shortest-to-longest (top-to-bottom) post-capture lifespans. Inset shows the sta-
tionary medfly population in which the yellow tick marks depict the ages at which individual medflies are
sampled. b Same as (a) except with the pre- and post-capture segments of individuals decoupled and both
ordered according to length from top-to-bottom to show the symmetry (mirror image) of the distributions

here {(| − 1|(g), x (g)
1 ), (| − 2|(g), x (g)

2 ), . . . , (| − k|(g), x (g)
k )} are gth combination of

cells such that Hg is a vertical mirror image of G1. Image of G1 is visualized as if it
is seen from the mirror kept on y-axis. Note that, we have generated k! graphs by our
construction, and one of such graph, which we called as Hg is shown to have vertical
mirror image of G1. ��

Our theorem establishes existence of graph depicting mirror images of the pre-
and post-capture longevity distributions in Fig. 1. In general, in the area of population
biology where survivorship curves of captive cohort obey Carey’s Equality, there is
a need for understanding the pattern within the data structure. The results by Vau-
pel (2009) and Goldstein (2009) explain functional symmetries as an application of
renewal theory. We do not depend on any of the classical works on renewal equation
and renewal theory proposed by Lotka (1907, 1939a, b, 1956) and by Feller (1941)
(also see Chapter XI in Feller 1971). Our inspiration is purely from experimental
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observations demonstrated by James Carey and a statement on stationary populations
in the equation (1) in the paper by Vaupel (2009). However, our theory and method of
proof uses sequentially arranged data of captive individuals, which was also usually
done in renewal theory analysis or proving renewal-type of equations.

Hence our method provide an alternative and independent approach for such kind
of sequentially arranged captive subjects. Besides relating the captive ages and cor-
responding follow-up durations of subjects in a stationary population, the principles
of the theorem helped to visualize person-years in a follow-up starting at birth, in a
stationary population model in which subjects of each age are captured.

2.1 Life expectancy

First we construct the age structured survival function using l(s), the number of cap-
tured subjects at age s and l(s0), the number of subjects at the beginning of the
follow-up. Suppose s0 is the time at the beginning of the follow-up, si is the time
at the i th time point of observation for i = 1, 2, . . . , k. Suppose each of the yti for
i = 1, 2, . . . , k fall exactly in one of the time intervals (si−1, si ), then the expectancy
of life is k+1

2 . The probability of death over the time period are q(si ) = 1
k−i with the

survival pattern, l(si ) = k − i for i = 1, 2, . . . , k − 1 and l(sk) = 0, q(sk) = 1.
Suppose there are ni number of yti falling within (si−1, si ) such that

∑k
i=1 ni = k

and l(si ) follows the previous construction. If ni > 1 in one or more of the (si−1, si )

then there must exist empty cells where the event of death is avoided. Let us define a
number c1 as follows:

c1 ={Number of cells (si−1, si ) for i = 1, 2, . . . , k where exactly one of the yti falls}

If c1 = k, then the life expectancy is k+2
2 . If c1 �= k, then at least one of the (si−1, si )

is empty. There could be several combinations of distribution of yt1 in (si−1, si ) when
the event c1 �= k occurs, and we explain in the following remark one possible situation
in which deaths are concentrated in the early ages and at late ages. Other combinations
can be evaluated using similar constructions.

Remark 1 Suppose n1 = n2 = · · · = nr1 = 1; nr1+1 = nr1+2 = · · · = nr2 = 0; and
nr2+1 = nr2+2 = · · · = nk = 1 such that

∑k
i=1 ni = k for some 1 < r1 < r2 < k.

The probability of death at various ages, q(si ), is,

q(si ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
k−i for i = 0, 1, . . . , (r1 − 1)

0 for i = r1, (r1 + 1), . . . , (r2 − 1)

1
k−(r1+i) for i = 0, 1, . . . , (k − 2)

1 for i = (k − 1)

(2.5)
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The life expectancy, e(s0), is obtained by the formula below:

e(s0) = 1

2k

⎡
⎣2r1−1∑

i=1

{2k − i} +
2k−1∑

j=2r1+1

{2k − j}
⎤
⎦ + (k − r1)(r2 − r1 − 1)

k
(2.6)

2.2 Person-years and means

Under the above set-up, in this section we derive the mean age of the captive cohort in
terms of the mean of the person-units followed. Suppose a(k, x) denotes kth-subject
(k > 0) is captured at age x , then

∫ ∞
1 a(k, x) dk is number of subjects captured at

age x . The mean age at capture for all subjects of the cohort formed of subjects of all
ages, c(0), is

c(0) =
∫ ∞

0

[
x

∫ ∞
1 a(k, x) dk

]
dx∫ ∞

0

∫ ∞
1 a(k, x) dkdx

. (2.7)

Let
∫ s

0 b(y) dy be the number of deaths out of
∫ ∞

0

∫ ∞
1 a(k, x) dkdx during the age

0 to s. The number of subjects surviving at age s is

∫ ∞

0

∫ ∞

1
a(k, x) dkdx −

∫ s

0
b(y) dy

and the number of subjects surviving at age (n + 1)s for some positive integer n is

∫ ∞

0

∫ ∞

1
a(k, x) dkdx −

∞∑
n=0

∫ (n+1)s

ns
b(y) dy.

Thus, life expectancy at the formation stage of a captive cohort, say, E[c(0)] can
be computed by the formula

E[c(0)] =
∫ ∞

0

∫ ∞
0

∫ ∞
1 a(k, x) dkdxds − ∫ ∞

0

(∑∞
n=0

∫ (n+1)s
ns b(y) dy

)
ds∫ ∞

0

∫ ∞
1 a(k, x) dkdx

(2.8)

We state a theorem for the total person-years to be lived by all the subjects in a birth
cohort.

Theorem 2 Suppose subjects of each age of life in a population are captured.
Then, using the constructions in c(0) and E[c(0)], the total person-years, say,
T (a, c(0), E[c(0)]), that will be lived by newly born subjects in a stationary pop-
ulation can be expressed as

T (a, c(0), E[c(0)]) = (c(0) + E[c(0)])
∫ ∞

0

∫ ∞

1
a(k, x) dkdx .
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Proof We have,

(c(0) + E[c(0)])
∫ ∞

0

∫ ∞

1
a(k, x) dkdx

=
∫ ∞

0

[
x

∫ ∞

1
a(k, x)dk

]
dx +

∫ ∞

0

∫ ∞

0

∫ ∞

1
a(k, x) dkdxds

−
∫ ∞

0

( ∞∑
n=0

∫ (n+1)s

ns
b(y) dy

)
ds

=
∫ ∞

0

[
x

∫ ∞

1
a(k, x) dk

]
dx

+
∫ ∞

0

[∫ ∞

0

∫ ∞

1
a(k, x) dkdx −

∞∑
n=0

∫ (n+1)s

ns
b(y) dy

]
ds (2.9)

The R.H.S. of (2.9) is sum of ages of subjects of all ages in a captive cohort, and
total person-years to be lived by the captive cohort, which is T (a, c(0), E[c(0)]). ��

3 History and related results

An Equality arising out of symmetries of life lived and life left was named as Carey’s
Equality by Vaupel (2009), to highlight the discovery of certain symmetries in his
biodemographic experiments by James Carey (see, for example, Müller et al. 2004;
Carey et al. 2008). Vaupel (2009) and Goldstein (2009) have proved equality on such
symmetries as a direct application of renewal theory. Our main theorem in this article
is not inspired by renewal theory, but we conceptualized our approach directly from
experimental results shown by James Carey and then used equation (1) from Vaupel
(2009) in our hypothesis. Renewal theory has long history even before the semi-
nal works on population dynamics by Alfred Lotka (see, for example, Lotka 1907,
1939a, b), who has used an integral equation of type (3.1) to link number of births at
time t > 0 with number of births a women has at time t = 0.

B(t) =
∫ t

0
G(t, a) da + H(t) (3.1)

where B(t) is total number of births at time t, G(t, a) is number of births from a
women who is at age a and alive at time t and H(t) is number of births from a women
who is alive at t = 0. Usually, we compute B(t) from a = α to a = β, where α is
lower reproductive age and β is upper reproductive age. G(t, a) can be written as,

G(t, a) = B(t − a)s(a) (3.2)

where B(t −a) is total number of births at time (t −a) and s(a) is chance of surviving
to exact age a. (3.1) is also referred as renewal equation. Combining (3.1) and (3.2),
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we can write B(t) within reproductive ages as,

B(t) =
∫ β

α

B(t − a)s(a) da (3.3)

Feller (1971) provided foundations of renewal theory in his book (see Chapters
VI and XI) as did authors of other books which were written exclusively on renewal
theory (see for example, Cox 1962) or contained; chapters devoted to basic renewal
theory (for example, see Chapter 6 in Lawler 2006 Chapter 12 in Karlin 1969). Several
applications of convolutions of independent random variables which we see in renewal
theory can also be found in understanding disease progression between one stage to
another stage, epidemic prediction and so forth (for example, see Brookmeyer and
Gail 1988; Rao 2015).

4 Example and visualization

We provide here a practical application based on the medfly population with a visual
depiction of Carey’s Equality (Fig. 1). Note the symmetry of the pre- and post-capture
segments of the lifespans of individuals in the population that underlies the equivalency
of life-days which, in turn, underlies the equivalency noted by Vaupel (2009), “If an
individual is chosen at random from a stationary population…then the probability the
individual is one who has lived a years equals the probability the individuals is one
who has that number of years left to live.”

Carey’s Equality is important because it both builds on and complements the prop-
erties of one of the most important models in demography: the stationary population
model. Stationary population model is fundamental to formal demography because it
is a special case of the stable population model, and provides explicit expressions that
connect the major demographic parameters to one another, including life expectancy,
birth rates, death rates and age structure, see Chapter 3 in Preston et al. (2001). A
graphical depiction of Carey’s Equality, shown in Fig. 2, shows the interconnected-
ness of these parameters. Note that the shape of the stationary population 2a as well
as both its age and death distributions 2b are identical, and that the proportion of each
age class in the captive population 2c is identical to the proportions within the whole
population (i.e. due to the symmetrical distributions of pre- and post-capture lifespans
in 2b).

5 Discussion

The approach we used in this paper to demonstrate the mathematical identity under-
lying Carey’s Equality is fundamentally different than that used by previous authors.
Originally James Carey created a simple life table model (Table 1 in Müller et al.
2004) to demonstrate the equality of age structure and post-capture deaths in a sta-
tionary population, the identity of which was then formalized by statisticians (Müller
et al. 2004). Vaupel (2009) and Goldstein (2009) followed by using mathematical first
principles to derive the equality.
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Fig. 2 Structural interconnectedness of an hypothetical stationary Mediterranean fruit fly population show-
ing: a days to death by age groups; b age and death distributions; and c captive survival

Our approach differs from the one we just outlined. Instead of first formulating and
then deriving the equality, we justified the constancy of post-capture patterns of death
in stationary medfly populations in the following two steps. The first was to conjecture
that in stationary populations the ordered pre- and post-capture life course segments
of individuals will be symmetrical (Theorem 1) and that total person-years in a captive
cohort can be formulated (Theorem 2). The second was to prove these relationships
using a series of mathematical assumptions (i.e. the respective proofs).

Our approach contributes to the demographic literature in general and specifically
to an understanding of Carey’s Equality in several ways. First, our theorems provide
an independent method for formulating a mathematical relationship in formal demog-
raphy. Indeed we are unaware of any other models in formal demography that have
involved proofs from mathematical conjectures (theorems). Second, our proofs allow
us to state unequivocally that the Carey Equality will be true in all stationary pop-
ulations. Although this is a logical outcome from all of the earlier approaches, our
approach makes this result both explicit and conclusive. Third, our proofs required
that we draw on set theory, an area of mathematics involving logic that is not com-
monly used in demography. As a consequence of the problem framed in fundamental
mathematics, Carey’s Equality is better situated both to draw from and be extended
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into other areas of basic mathematical theory. Fourth, using the ideas of the main the-
orem, we are positioned to obtain further results related to Carey’s Equality such as
for higher dimensions and probabilistic and deterministic results for multiple captive
cohorts.

6 Conclusions

Our paper offers new sets of tools, techniques and theoretical framework in terms of
visualization of the demographic data involving capture ages and development of new
theoretical ideas for analyzing data obtained by captive cohorts. Such approaches will
have applications in other demographic situations, for example, understanding aging
patterns in a captive cohort data when information on lives left is right truncated,
projecting various scenarios of demographic transition, etc,

The main result of our paper will be useful in understanding the relationship between
average lengths of lives of captured, follow-up, and total lengths of the lives in a station-
ary population. Our method of re-structuring the follow-up durations of captive cohort
can be adopted also for non-stationary populations, which can be used for understand-
ing the internal structures of the population with respect to the age at capture. This
will enable us to look deeper into the aging process of stationary and non-stationary
populations. For each captive cohort of subjects there exists an associated, exact con-
figuration of a combination of coordinates of the survival graphs, and this association
is dynamic. The right combination of coordinates is dependent on the formation of
the captive cohort. The idea of a proof through formation of symmetric graphs, com-
bined with captive age distribution is novel. We have demonstrated the utility of such
thinking in understanding symmetric patterns formed of a captive cohort and asso-
ciated follow-up lengths. This strategy was also helpful for us in deriving formulae
for expectation of life in a stationary population, discretely, and also using multiple
integrals. The theory explained here can be adopted to both human and non-human
populations.
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